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ABSTRACT: This study derives a complete set of equatorially confined wave solutions from an anelastic equation set with

the complete Coriolis terms, which include both the vertical and meridional planetary vorticity. The propagation mecha-

nism can change with the effective static stability.When the effective static stability reduces to neutral, buoyancy ceases, but

the role of buoyancy as an eastward-propagation mechanism is replaced by the compressional beta effect (i.e., vertical

density-weighted advection of the meridional planetary vorticity). For example, the Kelvin mode becomes a compressional

Rossby mode. Compressional Rossby waves are meridional vorticity disturbances that propagate eastward owing to the

compressional beta effect. The compressional Rossby wave solutions can serve as a benchmark to validate the imple-

mentation of the nontraditional Coriolis terms (NCTs) in numerical models; with an effectively neutral condition and initial

large-scale disturbances given a half vertical wavelength spanning the troposphere on Earth, compressional Rossby waves

are expected to propagate eastward at a phase speed of 0.24m s21. The phase speed increases with the planetary rotation

rate and the vertical wavelength and also changes with the density scale height. Besides, the compressional beta effect and

the meridional vorticity tendency are reconstructed using reanalysis data and regressed upon tropical precipitation filtered

for the Madden–Julian oscillation (MJO). The results suggest that the compressional beta effect contributes 10.8% of the

meridional vorticity tendency associated with the MJO in terms of the ratio of the minimum values.

KEYWORDS: Tropics; Conservation equations; Madden-Julian oscillation; Waves, atmospheric; Regression analysis;

Model evaluation/performance

1. Introduction
Theories about equatorially confined waves substantially

explain the observed tropical large-scale variability of cloudi-

ness and precipitation (Kiladis et al. 2009). Matsuno (1966)

derived a set of equatorially confined wave solutions from the

shallow-water equation set. Silva Dias et al. (1983) derived a

vertical normal mode transform through which the hydrostatic

primitive-equation set projects completely onto the shallow-

water equation set given rigid upper and lower boundaries.

Although a rigid upper boundary does not exist, equatorially

confined wave solutions derived from the hydrostatic primitive-

equation set (Holton and Hakim 2013) are equivalent to

Matsuno’s (1966) solutions assuming the rigid boundaries

(Kiladis et al. 2009). The vertical normalmode transform (Silva

Dias et al. 1983) established a theoretical foundation for

applying Matsuno’s (1966) model to tropical tropospheric

large-scale flow. Wheeler and Kiladis (1999) demonstrated

that large parts of the space–time spectra of the cloudiness vari-

ability conform to the dispersion relations of Matsuno (1966).

Kiladis et al. (2009) summarized these theories and empha-

sized the concept of effective static stability felt by the waves.

The effects of static stability as a source of restoring force on

waves can be reduced when, in terms of anomalies associated

with waves, diabatic heating or cooling due to increased or

decreased moisture condensation partially offsets adiabatic

cooling or warming due to upward or downward motion

(Haertel and Kiladis 2004). Maher et al. (2019) suggested that

Matsuno’s model and the weak temperature gradient (WTG)

model (e.g., Bretherton and Sobel 2003; Sobel et al. 2001; Yano

and Bonazzola 2009) are two of the useful model hierarchies

for understanding tropical atmospheric processes. These two

hierarchies simplify the thermodynamics using different as-

sumptions. In terms of convective coupling, Matsuno’s model

assumes that the vertical motion constrains the diabatic effects

so that the static stability is effectively reduced, and the WTG

model assumes that the diabatic effects force the vertical mo-

tion to the extent that the buoyancy ceases. Each of the hier-

archies cannot be deduced to its complete form from each

other. However, for Matsuno’s model, reducing the effective

static stability to neutral yields no buoyancy, so the model

reaches the WTG balance but does not necessarily conform to

the WTG model. Such an apparent intersection of the hierar-

chies motivates us to explore the effectively neutral condition.

The equatorially confined wave theory is based on an un-

forced framework. Though diabatic heating and cooling are

involved, they are theoretically symmetric about the mean

state and affect only the effective buoyancy frequency. In time

scales of intraseasonal or longer, atmospheric flow is prone to

dissipation, and a forced-dissipative framework is likely more

analogous to most flows; for example, Gill’s (1980) model

simulates large-scale flow forced by diabatic heating. In such

time scales, though unforced frameworks like Matsuno’s

(1966) cannot be excluded as a possible analog for the upper-

tropospheric flow (Roundy 2012, 2020), forced-dissipative frame-

works like Gill’s (1980) have been useful in understanding
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large-scale flow associated with the Madden–Julian oscil-

lation (MJO; e.g., Adames and Kim 2016; Hayashi and Itoh

2012), El Niño–Southern Oscillation (ENSO; e.g., Neelin

et al. 1998), and the intertropical convergence zone (ITCZ;

e.g., Ong and Roundy 2019; Vallis 2017).

Most of the forced-dissipative models assume the hydro-

static approximation following Gill (1980). The hydrostatic

primitive-equation set omits the nontraditional Coriolis terms

(NCTs), which are terms involving the meridional planetary

vorticity, 2V cosq (V and q denote planetary rotation rate and

latitude). NCTs are negligible when the buoyancy frequency is

far larger than the meridional planetary vorticity (e.g., Müller
1989), which would be valid on Earth if the atmosphere were

dry. However, later studies suggested that the buoyancy fre-

quency can be effectively reduced by moist convection (e.g.,

Haertel and Kiladis 2004), and the validity of the omission of

NCTs was reassessed by Hayashi and Itoh (2012) and Ong and

Roundy (2019). These studies switched NCTs on and off in

a linearized forced-dissipative model to simulate large-scale

flow forced by a prescribed eastward-moving intraseasonal-

oscillating heat source along the equator (Hayashi and Itoh

2012) and a prescribed zonally symmetric steady heat source

(Ong and Roundy 2019). The results suggested that NCTs

contribute 10% or more of the forced vertical vorticity fields

through tilting the meridional planetary vorticity to the vertical.

Moreover, Ong and Roundy (2020) accounted for the vertical

NCT to correct the hypsometric equation, and the correction

contributes ;5% of the tropical large-scale geopotential

height variability. The effective buoyancy frequency is more

difficult to estimate than length and depth scales. Thus, using

the ratio of the NCT to the traditional Coriolis term in the

zonal momentum equation as a measure to validate the hy-

drostatic approximation for large-scale flow, Ong and Roundy

(2019) proposed a nondimensional parameter, Ô[ aD/(Y L),

where the characteristic scaling variables for a heat source or

sink are defined as follows: a is the distance from planet center,

Y is the distance of the corresponding subtropical jet from

equator,D is the vertical depth, andL is the meridional length.

The hydrostatic approximation is valid only if Ô is small so

that NCTs are negligible. Yet how do NCTs affect unforced

equatorial waves?Also, can Ômeasure the significance ofNCTs

in unforced equatorial waves?

Research about effects of NCTs on wave propagation began

with a focus on the interior of stars and giant planets, and

the following two important effects have been identified: to-

pographic beta effect (e.g., Busse 1994; Gerkema et al. 2008;

Heimpel et al. 2005; Yano 1998) and compressional beta effect

(e.g., Gilman and Glatzmaier 1981; Glatzmaier et al. 2009;

Verhoeven and Stellmach 2014). Considering vortex tubes

parallel to the rotation axis spanning the interior confined by,

typically, a spherical outer boundary, the topographic beta

effect refers to vortex stretching due to radial motion. Busse’s

linear model (e.g., Busse 1994) is classical but oversimplifies

the topographic beta effect (Yano 1998), and later studies (e.g.,

Heimpel et al. 2005) used numerical models to simulate this

effect. On the other hand, considering local meridional vorticity,

the compressional beta effect refers to vertical density-weighted

advection of the meridional planetary vorticity. To illustrate,

consider a positive meridional vorticity disturbance. To the

east of the positive disturbance, in terms of the meridional

planetary vorticity divided by density, the downward motion

yields positive advection. Multiplying density converts this

advection to increasing meridional relative vorticity via com-

pression. The opposite occurs to the west. Consequently, the

compressional beta effect transmits the meridional vorticity

disturbance to the east. Focusing on the interior dynamics of

giant planets, Glatzmaier et al. (2009) argued the importance

of the compressional beta effect, which was coupled to the

topographic beta effect using their numerical model. Using an

unbounded linear model, Verhoeven and Stellmach (2014)

untangled the compressional beta effect from coupling with the

topographic beta effect. They referred to Rossby waves as

driven by density-weighted advection of planetary vorticity in

general. However, Rossby waves conventionally refer to waves

driven by meridional advection of vertical planetary vorticity

(e.g., Holton and Hakim 2013; Vallis 2017). Abiding by this

convention, this paper refers to waves driven by the compres-

sional beta effect as compressional Rossby waves. Verhoeven

and Stellmach (2014) attempted to derive the dispersion rela-

tion of compressional Rossby waves. They found that the com-

pressional beta effect transmits zonal vertical circulation to the

east. However, their derivation is dynamically inconsistent (see

section 3) and is limited to a zonal–vertical plane.

Research about effects of NCTs on the complete set of equa-

torially confined wave solutions has been in progress (Fruman

2009;Roundy and Janiga 2012). Fruman (2009) used aBoussinesq

equation set including NCTs but not vertical acceleration

(quasi-hydrostatic), and Roundy and Janiga (2012) further

included vertical acceleration (fully nonhydrostatic). These

two cases are similar for low-frequency and long zonal wave-

length. Categories of equatorially confined wave solutions are

depicted in Table 1. In the Boussinesq models, NCTs widen

the meridional decay length scale of the equatorially confined

waves. At a certain longitude, NCTs tilt the lines of constant

phase upward and poleward, so the wave phases propagate

either equatorward and upward or poleward and downward,

while the meridional wave energy propagation is zero. However,

NCTs do not affect the dispersion relations of any subset of

the equatorially confined wave solutions in the Boussinesq

models (Fruman 2009; Roundy and Janiga 2012). The reason

may be that the meridional planetary vorticity divided by

density is constant in the Boussinesq models, and a gradient

of the meridional planetary vorticity divided by density is

necessary for the compressional beta effect (e.g., Gilman and

Glatzmaier 1981; Glatzmaier et al. 2009; Verhoeven and Stellmach

2014) to change the dispersion relations. Previous studies about

effects of NCTs onwaves on an f plane (Kasahara 2003; Kohma

and Sato 2013) are also useful for this study; especially, Kohma

and Sato (2013) used an anelastic equation set. The solutions

on a beta plane should reduce to the solutions on an f plane

when b / 0.

Development of dynamical cores for atmospheric models

usually benefits from research about deterministic initial value

problems. For example, numerical benchmarks of baroclinic

waves (e.g., Jablonowski and Williamson 2006; Ullrich et al.

2014) are widely used to test the model performance in the

3722 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 77



midlatitudes. On the other hand, in the tropics, simply testing

the dry dynamics overstratifies the atmosphere, but adding full

moist processes overcomplicates the benchmarking test. This

conundrum motivates Reed and Jablonowski (2012) to design

simplified moist physical parameterization for testing the

tropical performance. To further eliminate physical param-

eterization, this study tunes the dynamical parameters to

make the dry dynamical core more relevant to the moist

tropical atmosphere. Research about analytical wave solu-

tions emerging from the compressional beta effect can be

applied to validate the implementation of NCTs in the dy-

namical cores of atmospheric models. Such research can be

important because many model developers are restoring

NCTs, including DWD’s Icosahedral Nonhydrostatic model

(ICON; Borchert et al. 2019), GFDL’s Finite-Volume Cubed-

Sphere Dynamical Core (FV3; H.-M. H. Juang 2019, personal

communication), and NCAR’s Model for Prediction Across

Scales (MPAS;vW. C. Skamarock 2019, personal communication).

Borchert et al. (2019) applied a numerical benchmark of baro

clinic waves (Ullrich et al. 2014) and an analytical bench-

mark of acoustic waves. This study attempts to propose a

more useful benchmark featuring exact wave solutions that

can only exist with NCTs and dynamical parameters that

eliminate buoyancy.

This paper is organized as follows. Section 2 discusses an

anelastic equation set used in the following sections. Section 3

derives the compressional Rossby wave solution. Section 4

derives the complete set of equatorially confined wave solu-

tions. Section 5 applies the compressional Rossby wave solu-

tion to design a benchmarking test and presents results using

the MPAS. Section 6 demonstrates how to analyze the com-

pressional beta effect from data by exploring its contribution

to meridional vorticity tendency associated with the MJO.

Section 7 presents summary and discussion.

2. Anelastic equation set
An anelastic equation set formulated in Lipps and Hemler

(1982) is used because vorticity dynamics govern this dynam-

ical system (Jung and Arakawa 2008). Linearize the equation

set around a motionless stratified reference state with the

complete Coriolis terms on the equatorial beta plane, where

2V cosq reduces to 2V while 2V sinq reduces to by; b5 2V/a:

›b

›t
1 ~N2w5 0, (1a)

›u

›t
2byy1 2Vw1

›u
›x

5 0, (1b)

›y

›t
1byu1

›u
›y

5 0, (1c)

�
›w

›t
2 2Vu1

›u
›z

2 b5 0, (1d)

›u

›x
1

›y

›y
1

›w

›z
2

w

H
5 0: (1e)

The variables are defined as follows: u is zonal velocity, y is

meridional velocity, w is vertical velocity, b is buoyancy,

and u is potential-temperature-weighted perturbation Exner

function (a pressure-like perturbation proposed by Lipps and

Hemler 1982). The coordinates are geometric where z denotes

geopotential height. The parameters are defined as follows: N

is buoyancy frequency, and 1/H [ 2d lnr/dz is the inverse-

scale height of reference density, r. To validate the equatorial

beta-plane approximation, a (distance from planet center, used

to define b, x, y, and z) must be larger than the characteristic

meridional width and vertical depth. There is neither forcing

nor dissipation in Eqs. (1), but given ~N[
ffiffiffi
a

p
N, there can be

diabatic heating and cooling depending on a, which is a non-

dimensional effective buoyancy parameter. a 5 1 sets vertical

motion dry-adiabatic, and a 2 [0, 1) reduces the effect of ver-

tical motion on buoyancy; a5 0 is the neutral limit. Parameter
~N is defined as the effective buoyancy frequency. When the

nondimensional vertical acceleration parameter � 5 1 and 0

set the dynamical system fully nonhydrostatic and quasi-

hydrostatic, respectively; � serves as a dynamical tracer for

the vertical acceleration term during the derivation. Terms

with explicit V and b are the nontraditional and traditional

Coriolis terms.

The energy equation is derived because this study empha-

sizes energy constraints including energy conservation during

wave propagation and energy confinement in the equatorial

region. Apply Eq. (1e) to the sum of the following: [Eq. (1a)]3
rb/ ~N2 1 [Eq. (1b)]3 ru 1 [Eq. (1c)]3 ry 1 [Eq. (1d)]3 rw,

and average over a wave period (overbar):

›

›t

"
r

2

�
b2

~N2
1u2 1 y2 1 �w2

�#
1

›

›x
(ruu)1

›

›y
(ruy)

1
›

›z
(ruw)5 0: (2)

Equation (2) states a form of local energy conservation; local

tendency of total energy, (r/2)[(b2/ ~N2)1 u2 1 y2 1 �w2], equals

to three-dimensional convergence of energy flux, ruu, ruy,
and ruw for zonal, meridional, and vertical, respectively. With

periodic and radiation boundary conditions in zonal and ver-

tical directions, to conserve energy during zonal vertical wave

propagation, total energy and zonal vertical energy flux must

be constant at a certain latitude for every single plane wave

solution. Accordingly, the amplitude of u, y, w, b, and u must

increase exponentially with altitude to be inversely proportional

TABLE 1. Categories of equatorially confined wave solutions.

Hydrostatic Quasi-hydrostatic Fully nonhydrostatic

Shallow water Matsuno (1966) — —

Boussinesq — Fruman (2009) Roundy and Janiga (2012)

Anelastic Holton and Hakim (2013) — The present study
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to the square root of r for every single plane wave solution. To

confine energy in an unbounded equatorial region, for any

combinations of wave solutions, total energy must decay to

zero as y / 6‘, and meridional energy flux must be zero.

Consequently, the phases of u and y must be in quadrature so

that their inner product is zero.

The meridional vorticity equation is also derived because

it simplifies the derivation of compressional Rossby wave

solutions. Apply Eq. (1e) to the following: ›[Eq. (1b)]/›z 2
›[Eq. (1d)]/›x:

›

›t

�
›u

›z
2 �

›w

›x

�
1 2V

w

H
2 2V

›y

›y
2by

›y

›z
1

›b

›x
5 0: (3)

Equation (3) states that meridional relative vorticity, ›u/›z 2
�›w/›x, changes in time in response to the following mecha-

nisms: 22Vw/H is the vertical density-weighted advection of

meridional planetary vorticity (i.e., the compressional beta

effect), 2V›y/›y is the meridional stretching of meridional

planetary vorticity, by›y/›z is the tilting of planetary vorticity

from vertical to meridional, and 2›b/›x is buoyancy genera-

tion. To gain more insight into the compressional beta effect,

rewrite the term;22Vw/H5 2Vw(d lnr/dz)52rw(d/dz)(2V/r).

In this form, the vertical advection operator, 2wd/dz, multiplies

density, and the advected quantity is the meridional planetary

vorticity divided by density.

3. Compressional Rossby waves
To derive compressional Rossby waves, ignore terms in-

volving y and b in Eq. (3). This step isolates the compressional

beta effect from the complex equation set, which is the subject

of section 4. Ignoring ›y/›y enables rewriting Eq. (3) in terms of

zonal vertical mass streamfunction, C, where ru [ ›C/›z and

rw [ 2›C/›x:

›

›t

�
�
›2C

›x2
1
›2C

›z2
1

1

H

›C

›z

�
2

2V

H

›C

›x
5 0, (4)

where (1/H)(›C/›z) can be interpreted as a compressional

effect on the streamfunction because it emerges from the ref-

erence density variations.

Assume zonal–vertical plane wave solutions to Eq. (4):

C5Ĉ exp(2z/2H) exp[i(kx1mz2vt)]. The factorexp(2z/2H)

ensures energy conservation during vertical propagation because

r and the amplitude of w have factors of exp(2z/H) and

exp(z/2H). Plug the assumed solutions intoEq. (4), and rearrange:

v

k
5
2V

H

�
�k2 1m2 1

1

4H2

�21

. (5)

Equation (5) states the dispersion relation of compressional

Rossby waves. The phase speed (v/k) is eastward and increases

with the planetary rotation rate (V), the vertical wavelength

(2p/m), and the zonal wavelength (2p/k); k is insignificant for

large-scale flow. The zonal phase speed also changes with the

density scale height (H), yet not monotonically; form2. 1/(4H2),

the zonal phase speed increases with decreasing H, and

vice versa. For large-scale compressional Rossby waves on

Earth with a half vertical wavelength spanning an effectively

neutral troposphere, the zonal phase speed is 0.24 m s21,

FIG. 1. Snapshots of the zonal vertical structures of the analytical

solution of (a),(b) the compressional Rossby waves ( ~N5 0) and

(c) the Kelvin waves ( ~N5N). In (a), the contours denote the mass

streamfunction, and the arrows denote the mass flux direction.

The shading denotes the meridional planetary vorticity divided by

density normalized by the surface value. In (b) and (c), the contours

denote u (a pressure-like perturbation), and the shading denotes

the zonal wind. The dashed contours denote negative values (negative

streamfunction corresponds to positive meridional relative vorticity),

and the zero contours are omitted. The length and depth scales are

normalized by the wavelengths.
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given V5 7.292 3 1025 s21, H 5 9.1 km, and 2p/m 5 25 km.

Superposing incident and reflected waves against a rigid

lower boundary, the solution becomes

w5w
0
exp
� z

2H

�
sin(mz) sin(kx2vt) , (6a)

u5u
0
exp
� z

2H

�
cos mz1 arctan

v

2H
2 2Vk

mv

0
@

1
A cos(kx2vt) ,

(6b)

u5 u
0
exp
� z

2H

�
cos mz1 arctan

v

2H
2 2Vk

mv

0
@

1 arctan
2Vm

V

H
2 �vk

1
CA cos(kx2vt) , (6c)

w
0
5

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4V2 2 �v2

p u
0
, (6d)

u
0
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

H2
1 �v2k2 2 �

2Vvk

H
1 4V2m2

r
4V2 2 �v2

u
0
, (6e)

where u0, w0, and u0 denote amplitudes of u, w, and u, re-

spectively. Figure 1 shows snapshots of the analytical solution

of the zonal vertical structures of such waves. In Fig. 1a, the

downward motion yields positive density-weighted advection

of the meridional planetary vorticity, and the upward motion

yields the opposite. Hence, the meridional vorticity distur-

bances propagate eastward. The dispersion relation derived by

Verhoeven and Stellmach (2014) resembles Eq. (5) but lacks

the term 1/(4H2) because they ignored the compressional ef-

fect on the streamfunction while considering the compres-

sional beta effect; hence, their derivation is dynamically

inconsistent. Verhoeven and Stellmach (2014) mentioned one

of the restrictions on the validity of their solution;m2� 1/(4H2).

Yet even if m2 � 1/(4H2), their solution does not conserve

energy when the waves propagate vertically by a distance of

order H. If m2 # 1/(4H2), their solution will have a remarkable

fast bias in terms of the phase speed.

In Eqs. (6b) and (6c), the vertical phase of u is shifted from

the vertical phase of u by arctan[2Vm/(V/H 2 �vk)]. In

Fig. 1b, a low-u region is located above a low-u region and

below a high-u region, and vice versa. This relation is consistent

with Ong and Roundy (2020), who introduced NCTs to the

hypsometric equation and showed that easterly winds in a layer

correspond to low pressure perturbations above the layer or

high below it. The structure in Fig. 1b is a signature of com-

pressional Rossby waves, which is different from Kelvin

waves, where u and u are in phase (Fig. 1c).

4. Complete set of equatorially confined waves
To derive the complete set of equatorially confined waves,

assume zonal–vertical plane wave solutions to Eq. (1) that

vary meridionally: fu, y, w, b, ug5 fû(y), ŷ(y), ŵ(y), b̂(y),
û(y)g exp[z/(2H)] exp[i(kx1mz2vt)]. The amplitudes vary

vertically and meridionally. Vertically, the factor exp[z/(2H)]

ensures energy conservation. Meridionally, the hatted factors

are unknown and will be solved given the necessary conditions

for energy confinement in the equatorial region. Plug the as-

sumed solutions into Eq. (1):

ivb̂5 ~N2ŵ , (7a)

ivû52byŷ1 2Vŵ1 ikû , (7b)

2ivŷ1byû1
dû
dy

5 0, (7c)

2iv�ŵ2 2Vû1

�
1

2H
1 im

�
û2 b̂5 0, (7d)

ikû1
dŷ

dy
1

�
2

1

2H
1 im

�
ŵ5 0: (7e)

Because the relation between û and ŷ is the pivot to determine

the necessary conditions for the energy confinement, b̂, û, and

ŵ are eliminated through the following steps in order: multiply

Eqs. (7c)–(7e) by iv, plug Eqs. (7a) and (7b) in to eliminate b̂

and û, multiply the newEqs. (7c) and (7e) by (�v2 2 ~N2 2 4V2),

and plug the new Eq. (7d) in to eliminate ŵ:

v2(�v2 2 ~N2 2 4V2)1b2y2 ~N2 2 �v2
� �	 


ŷ

1

�
2Vbymv1 ikby

�
�v2 2 ~N2 2

Vv

Hk

��
û

1 iv �v2 2 ~N2 2 4V2
� �dû

dy
5 0, (8a)

�
2k2 ~N2 2 �v2

� �
2 k

2Vv

H
1v2

�
m2 1

1

4H2

��
û

5

�
2Vbymv2 ikby

�
�v2 2 ~N2 2

Vv

Hk

��
ŷ

1 iv �v2 2 ~N2 2 4V2
� �dŷ

dy
. (8b)

Given any y that is real, according to Eq. (8a), û5 0 yields

trivial solutions because ŷ5 0 must be true. According to

Eq. (8b), û 6¼ 0 yields two types of nontrivial solutions, zero-ŷ

and nonzero-ŷ cases. Also, the zero-ŷ and nonzero-ŷ cases

require zero-K and nonzero-K, where K[2k2( ~N2 2 �v2)2
k(2Vv/H)1v2fm2 1 [1/(4H2)]g. Sections 4a and 4b solve these
two cases separately, and section 4c discusses the solutions.

a. Zero-ŷ case
Apply ŷ5 0 to Eq. (8):

�
2Vbymv1 ikby

�
�v2 2 ~N2 2

Vv

Hk

��
û

1 iv �v2 2 ~N2 2 4V2
� � dû

dy
5 0, (9a)

�
2k2 ~N2 2 �v2

� �
2k

2Vv

H
1v2

�
m2 1

1

4H2

��
û5 0: (9b)

Integrating Eq. (9a) yields the zero-ŷ solution for û, and
plugging this into the original assumed solution yields the

following:
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u5u
0
exp

z

2H
2

~N2 1
Vv

Hk
2 �v2

~N2 1 4V2 2 �v2

bk

v

y2

2

0
B@

1
CA

3 exp

�
i

�
kx2vt1mz1

22Vbm

~N2 1 4V2 2 �v2

y2

2

��
. (10)

Equation (9b) yields the dispersion relation of the zero-ŷ

solution:

2k2( ~N2 2 �v2)2k
2Vv

H
1v2

�
m2 1

1

4H2

�
5 0: (11)

Equations (10) and (11) are consistent with the Kelvin wave

solutions in previous studies (Fruman 2009; Holton andHakim

2013; Kohma and Sato 2013; Roundy and Janiga 2012) when

certain limits are taken. At the hydrostatic limit (i.e., � / 0

and V / 0), Eqs. (10) and (11) reduce to the solutions of

Holton and Hakim (2013). At the Boussinesq limit (i.e.,H/ ‘),
Eqs. (10) and (11) reduce to the solutions of Roundy and Janiga

(2012), which further reduce to the solutions of Fruman (2009)

at the quasi-hydrostatic limit (i.e., � / 0). Furthermore,

Eq. (11) is equivalent to Eq. (33) of Kohma and Sato (2013),

who suggested that these waves are not trapped by a zonal

boundary at the equator using an f plane. However, Eqs. (10)

and (11) suggest that these waves are trapped on the

equatorial beta plane only if propagating eastward; given

Eq. (11), f[ ~N2 1Vv/(Hk)2 �v2]/( ~N2 1 4V2 2 �v2)g(bk/v)5
fb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( ~N22�v2)[m211/(4H2)]1V2/H2

q
g=( ~N2 1 4V2 2 �v2). 0

in Eq. (10) if and only if v/k . 0 and �k2=[m2 1 1/(4H2)],ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 ( ~N2H2/V2)[�k2 1m2 1 1/(4H2)]

q
. The second condition

only restrains a large aspect ratio �k2=[m2 1 1/(4H2)] from the

equatorial confinement.

However, the zero-ŷ waves are notKelvin waves. To illustrate,

at the neutral limit (i.e., ~N/ 0), Eq. (11) reduces to Eq. (5) (i.e.,

compressional Rossby waves). Moreover, taking this limit for

Eq. (10) suggest that the compressional Rossby waves are

equatorially confined for an aspect ratio smaller than unity.

With the effective static stability increasing from neutral,

Eq. (11) approaches the canonical solution for Kelvin waves,

with a continuum of hybrid forms in between. Kelvin wave

dynamics dominate if the effective buoyancy frequency is

larger than the meridional planetary vorticity. All zero-ŷ

waves with a small aspect ratio [i.e., �k2 � m2 1 1/(4H2)] are

nondispersive in the zonal direction.

b. Nonzero-ŷ case
Derivations to be elaborated in this section show that

the nonzero-ŷ solutions of Eq. (8) can be decomposed as

ŷ[ y0V(y/L) exp(2y2/2L2) exp(iGy2/2), where the four fac-

tors denote amplitude of y, meridional stationary oscilla-

tor, meridional decay function, and meridional propagation

oscillator. G can be interpreted as a meridional propaga-

tion parameter; phases propagate poleward for positive

G, and vice versa. G can also be interpreted as a meridional

tilting parameter; lines of constant phase tilt upward and

poleward if the signs of G and m are opposite, and vice versa.

To discuss energy constraints on G, plug the decomposi-

tion and K[2k2 ~N2 2 �v2
� �

2 k(2Vv/H)1v2[m2 1 1/(4H2)]

into Eq. (8b):

Kû5

"
2Vbymv2Gyv(�v2 2 ~N2 2 4V2)

2 ikby

�
�v2 2 ~N2 2

Vv

Hk

�
2 i

y

L2
v(�v2 2 ~N2 2 4V2)

1 i
1

V

dV

dy
v(�v2 2 ~N2 2 4V2)

#
ŷ . (12)

To prevent any meridional energy flux, if û is real, ŷ must be

imaginary. To satisfy Eq. (12), if û is real, the rhs of Eq. (12)

must be real. Consequently, given û is real without loss of

generality (assuming any complex û yields the same conclu-

sion), on the rhs of Eq. (12), 2Gyv(�v2 2 ~N2 2 4V2) must

cancel 2Vbymv, which constrains the meridional propagation

(tilting) parameter:

G5
22Vbm

~N2 1 4V2 2 �v2
. (13)

Accordingly, the meridional phase propagation is nonzero

as in Eq. (13) if and only if the meridional energy propa-

gation is zero. Equation (13) is equivalent to Eq. (18) of

Roundy and Janiga (2012); thus, the meridional phase

propagation is independent from the reference density

variations. Moreover, because ~N2 1 4V2 2 �v2 . 0 for all real

solutions, G andm are opposite signed. Consequently, Fruman’s

(2009) result of upward and poleward tilting of lines of constant

phase also applies to the less-approximated case in the present

study (Table 1).

To solve for V and L, multiply Eq. (8a) by K, plug Eq. (12)

into it, and rearrange:

~N2 1 4V2 2 �v2
� � d2

dy2

�
V exp

�
2y2

2L2

��
1

"�
k2 1

kb

v

��
�v2 2 ~N2 2

Vv

Hk

�
1v2

�
m2 1

1

4H2
2

Vk

Hv

�

2

 
m2 1

1

4H2
2

4V2m2

~N2 1 4V2 2 �v2

!
b2y2

#
V exp

�
2y2

2L2

�
5 0: (14)

Then, to apply known solutions to Eq. (14), nondimension-

alize it by plugging y [ LY into it. This yields a form

of Hermite’s equation, d2V/dY2 2 2Y(dV/dY) 1 lV 5
0, where

L2 5
~N2 1 4V2 2 �v2

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~N2 2 �v2
� �

m2 1
1

4H2

� �
1

V2

H2

s , (15a)
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l5
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~N2 1 4V2 2 �v2

��
k2 1

kb

v

��
�v2 2 ~N2 2

Vv

Hk

�

1v2

�
m2 1

1

4H2
2

Vk

Hv

��
2 1: (15b)

The solutions for V are the physicists’ Hermite polynomials,

Hn, where n 5 0, 1, 2, . . . (e.g., Vallis 2017). Plugging this into

the original assumed solution yields the following:

y5 y
0
H

n

�y
L

�
exp

�
z

2H
2

y2

2L2

�
exp

�
i

�
kx2vt1mz1

Gy2

2

��
.

(16)

For each n, solutions exist if and only if l5 2n, which yields the

dispersion relations:

2

�
k2 1

kb

v

��
~N2 1

Vv

Hk
2 �v2

�
1v2

�
m2 1

1

4H2
2

Vk

Hv

�

5 (2n1 1)
~N2 1 4V2 2 �v2

L2
. (17)

Equations (13) and (15)–(17) are consistent with the non-

Kelvin wave solutions in previous studies (Fruman 2009;

Holton and Hakim 2013; Roundy and Janiga 2012) when cer-

tain limits are taken. A subset of the dispersion relations where

K 5 0 is discarded because the derivation of Eq. (14) requires

K 6¼ 0. Note that L2 . 0 is true for all results discussed below.

c. Discussion

The zonal temporal dispersion relations of the zero-ŷ and

nonzero-ŷ cases are depicted together in Fig. 2, given V 5
7.292 3 1025 s21, H 5 9.1 km, and 2p/m 5 25 km. In the

strongly stable case (Fig. 2a), all the modes appear like

Matsuno’s (1966) modes with an equivalent depth of 33m,

and the inclusion of NCTs does not make a noticeable differ-

ence in terms of the dispersion relations and the spatial

structure. Such an equivalent depth lies within the canonical

convectively coupled equatorial wave bands on Earth (e.g.,

Wheeler and Kiladis 1999). In the neutral case (Fig. 2b), the

zero-ŷ and nonzero-ŷ modes appear like the Kelvin and Yanai

(n 5 0, mixed Rossby–gravity) modes in Fig. 2a, but the com-

pressional beta effect replaces buoyancy as the eastward-

propagation mechanism. Also, in Fig. 2b, the westward

inertio-gravity (high-wavenumber and high-frequency) modes

in Fig. 2a disappear because buoyancy is zero but is a funda-

mental restoring force of these waves. Moreover, in Fig. 2b, the

Rossby (n . 0 and low-frequency) modes in Fig. 2a coincide

K 5 0 so are discarded. For the zero-ŷ mode (Fig. 2c), with

decreasing ~N, the zonal phase speed decreases linearly

without NCTs but nonlinearly with NCTs; in the latter case,

the decreasing rate of phase speed decreases so that the

phase speed approaches 0.24 m s21 instead of zero. For all

the modes transitioning from Fig. 2a to Fig. 2b, see the ani-

mation in mp4 format in the online supplemental material,

where black and red curves denote dispersion relations with

and without NCTs. Except the last frame of the animation

(Fig. 2b), the sound of a piano is played at a sound frequency

proportional to the effective buoyancy frequency used to plot

every frame. With decreasing ~N, the zonal phase speed of all

modes decreases, and the dispersion curves with and without

NCTs separate farther. Overall, the contributions of NCTs

become noticeable when the effective buoyancy frequency

becomes comparable or smaller than the meridional plane-

tary vorticity, which is consistent with Müller (1989).

FIG. 2. Zonal temporal dispersion relations of the equatorially

confined wave solutions for (a) a strongly stable case and (b) the

neutral case. (c) The transition of the zonal phase speed of

the zero-ŷ waves with and without NCTs from slightly stable to

strongly stable.
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The results suggest that Ô number (Ong andRoundy 2019) can

measure the significance of NCTs in unforced equatorial waves.

To estimate Ô number, choose L as the characteristic Y and L,

and 2H as the characteristic D. Then, plug these choices and

Eq. (15a) into Ô[ aD/(Y L), and assume low frequency where

v2 � 4V2. For the neutral case, Ô5 1; in words, NCTs are

on the leading order. For a strongly stable casewhere 2V/ ~N/ 0,

Ô; 2V/ ~N; in words, NCTs are negligible, so Matsuno’s

(1966) solutions, using the hydrostatic approximation, can be-

come valid.

5. Benchmarking test
To test the model performance with the implementation of

NCTs under a neutral condition, we choose the compressional

Rossby wave solutions in section 3 as a benchmark because the

model configuration is simpler than the solutions in section 4.

The spatial domain is a zonal vertical rectangle. The lateral

boundaries are periodic, and the upper and lower boundaries

are rigid. The planetary vorticity has a northward component

but no vertical component (i.e., using the generalized equato-

rial f plane). We make the planetary rotation rate much faster

to save process time; the wave period becomes as short as

86 400 s. The basic state is hydrostatic and motionless. The

initial perturbations are set using Eqs. (5) and (6). Table 2 lists

the parameters for the benchmarking test.

For the thermodynamics, we aim to eliminate buoyancy.

A possible way is to initiate the test with constant potential

temperature, but this drastically enhances the vertical decrease

of the density scale height. Instead, we use a barotropic ideal

gas whose thermodynamic properties fit our goal; its heat

capacity is infinity, so an isothermal atmosphere becomes

isentropic because its Poisson constant is zero. The u for

such a gas denotes perturbation of pressure divided by basic-

state density. For a fully compressible model, its speed of

sound is
ffiffiffiffiffiffiffi
gH

p
, where g denotes gravity acceleration, and

Eq. (1e) becomes

1

gH

›u
›t

1
›u

›x
1

›w

›z
2

w

H
5 0: (18)

While the structures in Eq. (6) still apply, the dispersion rela-

tion becomes

v

k
5
2V

H

 
�k2 1m2 1

1

4H2
1

4V2

gH
2 �

v2

gH

!21

. (19)

Compressional Rossby waves propagate slightly slower in the

fully compressible case as Eq. (19) than the anelastic case as

Eq. (5). In Table 2, different values of m are given for the two

cases so that the wave period remains 86 400 s. In practice,

2�v2/(gH) in Eq. (19) is omitted. If the Earth rotation rate

is used, the difference between Eqs. (5) and (19) will be

negligible, but the process time for the test will drastically

increase.

The implementation of NCTs has been a compiler option

in the MPAS atmospheric dynamical core (Skamarock et al.

2012), which is fully compressible. Testing this option with the

compressional Rossby waves, this study identified a flaw in its

source code (the vertical NCT had been mistakenly divided

by the gridcell area with units of square meters) and cor-

rected it. For the simulation, the grid mesh comprises

regular hexagons of which a pair of opposite sides lies in the

zonal direction. The zonal grid spacing is 5 km, so 400 grid

cells cover the domain width. The domain depth is equally

divided into 64 grid boxes, so the vertical grid spacing

is 198.77 m. All physical parameterization schemes and

Rayleigh damping are switched off. The results suggest that

the numerical solutions reasonably conform to the ana-

lytical solutions in this study; the contours of the results

almost overlap those on Fig. 1. In terms of the Euclidean

norm of the zonal velocity field, Fig. 3 depicts the per-

centages of the difference between the numerical and the

analytical solutions to the analytical solution. This nor-

malized difference decreases with u0; at the end of one

wave period (24 h), 1.315% for u0 5 0.09 m s21, 0.811% for

u0 5 0.045m s21, and 0.625% for u0 5 0.0225m s21. For the

zonal velocity field output every 3600 s, see compilation of

graphics in pdf format in the supplemental material, where

the thick black and thin green contours denote analytical

and numerical solutions. The difference is small and can be

substantially explained by the zonal advection of zonal ve-

locity. This conformation validates the recent correction of

the implementation of NCTs in the MPAS atmospheric

dynamical core.

6. Compressional beta effect in the MJO
To demonstrate how to analyze the compressional beta

effect from reanalysis data, we take the MJO as an example,

focusing on its zonal-vertical overturning circulation. The slow

eastward phase speed of the compressional Rossby wave

solutions motivates us to explore possible contributions of

the compressional beta effect to the eastward propagation

of the MJO, which is on the slowest end of the spectrum of

Wheeler and Kiladis (1999) but 20 times on average faster

than the compressional Rossby wave solutions. Although the

model used to create reanalysis data does not include NCTs,

the overturning circulations associated with the MJO in re-

analysis data compare fairly well with those in observed data

TABLE 2. Parameters used in the benchmarking test.

V (planetary rotation rate) 6.973 339 3 1023 s21

g (gravity acceleration) 9.806 16m s22

R (gas constant for dry air) 287.0 J kg21 K21

T (basic-state temperature) 311.0 K

H (density scale height) RT/g ffi 9.1 3 103m

k (Poisson constant) 0

pb (basic-state pressure at

the bottom)

1.0 3 105 Pa

Lx (domain width) 2.0 3 106m

k (zonal wavenumber) 2p/Lx

Lz (domain depth) 12 721m (fully compressible)

12 500m (anelastic)

m (vertical wavenumber) p/Lz

u0 (initial perturbation amplitude

of zonal velocity)

0.09m s21
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(Kiladis et al. 2005) and can be used to reconstruct the com-

pressional beta effect. Accordingly, this study analyzes the

MJO-filtered compressional beta effect and local meridional

vorticity tendency reconstructed from ERA-Interim (Dee

et al. 2011) reanalysis data from 1979 to 2018. The compres-

sional beta effect is approximated from 22Vw/H as Eq. (3) to

(2V/p)(Dp/Dt), where p denotes pressure, with the data in

isobaric coordinates. The local meridional vorticity tendency is

approximated with a central finite difference with a spacing of

1 day. AnMJO index for every longitude is created by filtering

tropical precipitation for an MJO band covering zonal

wavenumber from 1 to 10 and time period from 30 to

96 days. For the tropical precipitation, GPCPVersion 1.3 One-

Degree Daily Precipitation Dataset (Mesoscale Atmospheric

Processes Branch/Laboratory for Atmospheres/Earth Sciences

Division/Science and Exploration Directorate/Goddard Space

Flight Center/NASA, and Earth System Science Interdisciplinary

Center/University of Maryland 2018) is averaged from 158S to

158N. Then, the compressional beta effect and the local

meridional vorticity tendency are regressed upon the MJO

index. The statistical significance is tested with two-tailed

Student’s t test at 95% confidence level, where the equiva-

lent degrees of freedom take autocorrelation of 1-day lag

into account.

Figure 4 depicts zonal vertical distributions at the equator of

the results regressed upon the MJO-filtered precipitation at

908E. The most prominent signal of the compressional beta

effect is negative in the mid- to upper troposphere in theMJO-

active (convective) phase from 608 to 1358E minimizing at

908E. This negative compressional beta effect can be explained

by upward motion associated with the MJO-active phase. The

most prominent negative signal of the meridional vorticity

tendency is collocated with the negative signal of the com-

pressional beta effect. In terms of the ratio of the minimum

values, the compressional beta effect contributes 10.8% of the

meridional vorticity tendency. In other words, the east-up-west

circulation in the west of the MJO-active phase is propagating

toward the MJO-active phase partially owing to the compres-

sional beta effect. The compressional beta effect is lacking in

most of the current global atmospheric models because of the

omission of NCTs, but the consequences of this lack may vary.

For such models to yield an appropriate phase speed and am-

plitude of the MJO, they would need at least one of the other

terms in Eq. (3) to overact (e.g., an overestimated west–east

buoyancy gradient across theMJO-active phase). For the other

terms to remain appropriate, the phase speed would be

underestimated to maintain the amplitude, or the amplitude

would decrease with time to maintain the phase speed.

Another mechanism whereby NCTs can contribute to vorticity

budgets is through tilting (Hayashi and Itoh 2012). We suspect

that the tilting unlikely affects propagation for the following

reasons. Adding only the tilting to Matsuno’s (1966) model

does not change the dispersion relations of the equatorial

waves (Fruman 2009; Roundy and Janiga 2012). Adding both

the tilting and the compressional beta effect to it yields addi-

tional eastward propagation (section 4). Removing the tilting

from this result by removing the y dimension does not change

the eastward propagation (section 3).

7. Summary and discussion
This study corrects the derivation of the compressional

Rossby wave solutions of Verhoeven and Stellmach (2014) by

accounting for dynamical consistency and energy constraints.

Compressional Rossby waves are meridional vorticity distur-

bances in the equatorial region that propagate eastward owing

FIG. 3. Temporal evolutions of the normalized root-mean-

square errors of the numerical solutions of the compressional

Rossby waves using the MPAS. The numbers by the curves

denote the initial perturbation amplitude of zonal velocity

(m s21).

FIG. 4. Zonal–vertical distributions at the equator of the

meridional vorticity tendency (contours, s22) and the compres-

sional beta effect (shading, s22) regressed upon MJO-filtered

tropical precipitation at 908E. Significant at 95% confidence

level, shown results are the prediction at one standard deviation

of the filtered precipitation. The solid and dashed contours

denote positive and negative values, respectively. The zero

contour is omitted.
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to the compressional beta effect. This effect is due to vertical

density-weighted advection of the meridional planetary vor-

ticity; the advected quantity is the meridional planetary vor-

ticity divided by density, and multiplying density converts such

an advection to local meridional relative vorticity tendency via

compression or expansion. A signature of compressionalRossby

waves is a low pressure anomaly between easterly winds below

and westerly winds above and a high pressure anomaly with

the opposite wind pattern. The compressional Rossby wave

solutions can serve as a benchmark to validate the im-

plementation of the nontraditional Coriolis terms (NCTs).

With effectively neutral static stability and initial large-

scale disturbances given a half vertical wavelength spanning

the troposphere on Earth, compressional Rossby waves are

expected to propagate eastward at a phase speed of 0.24m s21.

The phase speed increases with the planetary rotation rate and

the vertical wavelength, and it also changes with the density

scale height. This benchmark can be important because many

model developers are restoring NCTs. We recently corrected

the implementation of NCTs in the MPAS atmospheric dy-

namical core and validated the correction by simulating the

compressional Rossby waves. This benchmarking test uses a

generalized equatorial f plane. Also, it uses fast planetary ro-

tation rate to save process time. Nonetheless, it uses barotropic

ideal gas to magnify the compressional beta effect without

adding moist processes. The numerical solutions reasonably

conform to the analytical solutions.

This study also derives a complete set of equatorially con-

fined wave solutions from an anelastic equation set with the

complete Coriolis terms, which include both the vertical and

meridional planetary vorticity. The propagation mechanism

can changewith the effective static stability. In a strongly stable

case in which the effective buoyancy frequency is larger than

the meridional planetary vorticity, the dispersion relations

appear like Matsuno’s (1966), which is true for the canonical

convectively coupled equatorial wave bands on Earth (e.g.,

Wheeler and Kiladis 1999). In the neutral case, in which

buoyancy ceases, the compressional beta effect replaces

buoyancy as the eastward-propagationmechanism, and westward-

propagating modes that depend on buoyancy disappear. The

complete set derived in this study remarkably differs from

Matsuno’s (1966) only if the meridional planetary vorticity is

comparable or larger than the effective buoyancy frequency,

which is consistent with Müller (1989).
As a demonstration of data analysis, the compressional beta

effect and the meridional vorticity tendency are reconstructed

using reanalysis data and regressed upon tropical precipitation

data filtered for the MJO. In the mid- to upper troposphere in

the MJO-active phase, the compressional beta effect is prom-

inently negative owing to the upward motion. In the same re-

gion, the meridional vorticity is decreasing with time. The

compressional beta effect explains 10.8% of the decrease of

the meridional vorticity in the MJO-active phase in terms of

the ratio of the minimum values.

More consideration shall be given to theories about a dy-

namical continuum from the Kelvin waves to the MJO. Roundy

(2020) showed that observed signals conforming to unforced

Kelvin waves exist in the upper troposphere throughout the

Kelvin wave–MJO spectrum. Adames et al. (2019) included

moisture variability into a zero-ŷ wave framework, and the

results suggest that the moisture dynamics becomes significant

while the system is adjusted toward the MJO. The present

study encourages a combination of both NCTs and moisture

variability for future studies because NCTs are also potentially

considerable for MJO propagation. Still, this combination may

not combine the unforced wave framework and the forced-

dissipative framework. Yet the MJO appears like unforced

waves in the upper troposphere but like forced flow in the

lower troposphere (Roundy 2012). This challenge is also left

for future studies.
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