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ABSTRACT: A solver for the nonhydrostatic deep-atmosphere equations of motion is described that extends the capa-

bilities of the Model for Prediction Across Scales-Atmosphere (MPAS-A) beyond the existing shallow-atmosphere

equations solver. The discretization and additional terms within this extensionmaintain the C-grid staggering, hybrid height

vertical coordinate, and spherical centroidal Voronoi mesh used by MPAS, and also preserve the solver’s conservation

properties. Idealized baroclinic wave test results, using Earth-radius and reduced-radius sphere configurations, verify the

correctness of the solver and compare well with published results from othermodels. For these test cases, the time evolution

of the maximum horizontal wind speed, and the total energy and its components, are presented as additional solution

metrics that may allow for further discrimination in model comparisons. The test case solutions are found to be sensitive to

the configuration of dissipationmechanisms inMPAS-A, andmany of the differences amongmodels in previously published

test case solutions appear to arise because of their differing dissipation configurations. For the deep-atmosphere reduced-

radius sphere test case, small-scale noise in the numerical solution was found to arise from the analytic initialization that

contains unstable lapse rates in the tropical lower troposphere. By adjusting a parameter in this initialization, the instability

is removed and the unphysical large-scale overturning no longer occurs. Inclusion of the deep-atmosphere capability in the

MPAS-A solver increases the dry dynamics cost by less than 5% on CPU-based architectures, and configuration of either

the shallow- or deep-atmosphere equations is controlled by a simple switch.

KEYWORDS: Coordinate systems; Grid systems; Model comparison; Nonlinear models; Numerical analysis/modeling;

Vertical coordinates

1. Introduction

Nonhydrostatic global models have typically been devel-

oped to integrate the equations of motion in which the shallow-

atmosphere approximation is employed (see e.g., White et al.

2005, for an overview of this and other approximations). This

approximation, used in most operational weather prediction

and climate models, has proven accurate for applications

where the necessary solution fidelity extends into the mid–

upper stratosphere. For applications requiring model tops ex-

tending through the mesosphere into the lower thermosphere,

the shallow-atmosphere approximation becomes significantly

less accurate (e.g., White and Bromley 1995; Akmaev 2011).

Since the depth of the atmospheric domain is no longer neg-

ligible in comparison to Earth’s radius, the deep-atmosphere

equations typically take into account the r22 variation of

gravity, where r is the radial distance from the center of Earth,

as well as variation of the mesh geometry, where horizontal

lengths and areas scale with r and r2, respectively. In addition,

for quasi-hydrostatic and nonhydrostatic models, the full

Coriolis terms are warranted as there are studies suggesting

that the neglect of the full Coriolis termsmay lead to significant

errors in the tropics (e.g., Hayashi and Itoh 2012; Ong and

Roundy 2019, 2020a).

Geospace applications use model tops in excess of 500 km,

well into the mesosphere and ionosphere, where the accuracy

of the shallow-atmosphere approximation is even more

problematic. Nonetheless, it is interesting that most of the

mesosphere–ionosphere models that have been developed

over the years have been based on the shallow-atmosphere

primitive equations, with additional physical processes included

that are appropriate for the thermosphere and ionosphere.

Examples include the ThermosphereGeneral CirculationModel

(TGCM; Dickinson et al. 1981), the Thermosphere–Ionosphere

General Circulation Model (TIGCM; Roble et al. 1988), the

Coupled Middle Atmosphere and Thermosphere (CMAT)

general circulation model (Harris et al. 2002), and the Whole

Atmosphere Community Climate Model (WACCM; Liu et al.

2018). An exception is the Global Ionosphere–Thermosphere

Model (GITM; Ridley et al. 2006), which solves the full deep-

atmosphere nonhydrostatic equations.

Over the last two decades a number of nonhydrostatic at-

mospheric models used in weather and climate applications

have been modified to integrate the deep-atmosphere equa-

tions that accommodate the generalizations mentioned above.

These models include, for example, one of the earliest global

nonhydrostatic models NICAM (Satoh et al. 2008), the Met

Office model ENDGAME (Wood et al. 2014) and the research

model MCore (Ullrich et al. 2014, and references therein), and

the ICON model (Borchert et al. 2019). Although very few

tests exist to validate deep-atmosphere equations solvers, all

these models except NICAM (unreported) were evaluated

with a baroclinic wave test case (Ullrich et al. 2014), where

shallow and deep configurations are tested on spheres of both

Earth radius and a reduced radius. The simulated baroclinic

waves behave similarly in these tests except for the deep-

atmosphere reduced-radius case, and previous studies did not
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explain why this case stands out. It is unlikely that the behavior

is due to the additional Coriolis and curvature terms because

the strong stratification of entropy needed by the baroclinic

waves theoretically makes the nontraditional Coriolis terms

unimportant (Müller 1989), and the curvature terms are even

smaller. In addition to the baroclinic wave test, Borchert et al.

(2019) proposed an acoustic wave test, but it is less useful for

models that handle acoustic waves anisotropically. In giant

planet studies, for example, Glatzmaier et al. (2009), Heimpel

et al. (2005), and Verhoeven and Stellmach (2014) have re-

portedmany numerical simulations using the deep-atmosphere

equations, but these simulations were not designed for vali-

dating numerical weather prediction models. In these giant

planet studies, under weak stratification, the inclusion of the

nontraditional Coriolis terms makes vortices parallel to the

axis of planet rotation instead of vertical. Thus, Ong and

Roundy (2020b) proposed an initial value problem with a lin-

earized analytical solution simulating axis-parallel vortices

under isentropic condition, and used it to validate the im-

plementation of nontraditional Coriolis terms in MPAS-A.

However, the analytical solution does not account for spherical

geometry.

In this paper we describe the extension of the Model for

Prediction Across Scales-Atmosphere (MPAS-A; Skamarock

et al. 2012) dynamical core modifying it to integrate either the

shallow- or deep-atmosphere equations.MPAS-A uses a finite-

volume discretization of the equations of motion and a

spherical centroidal Voronoi tessallation (SCVT) for its hori-

zontal mesh, in addition to the C-grid staggering. Collectively

these features represent a unique configuration among the

nonhydrostatic global models that employ the deep-atmosphere

equations. The finite-volume formulation for the deep-

atmosphere equations in the height coordinates used in

MPAS-A is straightforward, and we describe the extension to

the MPAS-A solver in section 2. There are few idealized test

cases for the deep-atmosphere equations, and in section 3 we

test the MPAS-A solver with the baroclinic wave tests for the

Earth-radius sphere used in Ullrich et al. (2014), where we also

present additional solution metrics and model configuration

results. In section 4 we examine baroclinic wave solutions for

the reduced-radius sphere test case also introduced in Ullrich

et al. In conducting these tests, we found that unstable lapse

rates were present in the initial lower tropical troposphere for

the reduced-radius sphere deep-atmosphere case. After suit-

ably removing this initial instability, we present modified re-

sults in section 4 that are in much closer agreement with the

shallow-atmosphere results. Section 5 summarizes the results

and discusses the limitations of the test cases.

2. Formulation

MPAS-A (Skamarock et al. 2012) uses a finite volume dis-

cretization of the shallow-atmosphere equations in addition

to a spherical centroidal Voronoi mesh and a C-grid staggering

of the prognostic variables. MPAS uses the standard formu-

lation of the shallow-atmosphere approximation (White and

Bromley 1995). With spherical geometry, the shallow-

atmosphere equations with the complete Coriolis terms

and a simple modification can conserve an approximated form

of angular momentum (Tort and Dubos 2014). However, to

conserve angular momentum in its standard form, the deep-

atmosphere geometry is necessary for the nontraditional

Coriolis terms (White and Bromley 1995).

Other atmospheric models that have been extended to solve

the deep-atmosphere equations also use finite volume dis-

cretizations and similar meshes. The NICAM model (Satoh

et al. 2008) employs an icosahedral mesh with no staggering of

the prognostic variables (i.e., anA-grid). It also uses an energy-

conserving time-integration scheme based on Satoh (2002),

which differs from that used in MPAS. Borchert et al. (2019)

describe the deep-atmosphere extension of the ICON model

employing C-grid staggered prognostic variables on a trian-

gular icosahedral mesh, essentially the dual of the MPAS

Voronoi mesh. With regard to geometry our deep-atmosphere

formulation closely follows that used in the ICON model ex-

cept for the horizontal mesh.

a. Continuous equations

The MPAS atmosphere solver, described in Skamarock

et al. (2012), employs a height-based terrain-following vertical

coordinate z following Klemp (2011). The coupled prognostic

variables in this coordinate are defined as
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where the vertical derivative of the computational coor-

dinate zz 5 ›z/›z, rd is the dry-air density, vH and w rep-

resent the horizontal and vertical velocities (ui, yj, wk)

where i 3 j 5 k, u is the potential temperature, qy is the

water vapor mixing ratio with respect to the dry-air density

rd, qj are the mixing ratios of other moisture constituents

and other scalars, and Rd and Ry are the gas constants for

dry air and water vapor, respectively. The full continuous

equations for both deep- and shallow-atmosphere config-

urations can be cast as
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The term bd 5 1 for the deep-atmosphere equations, and the

traditional shallow-atmosphere approximation is recovered

when bd 5 0 and the radial distance from the center of the

sphere r is approximated by the constant sphere radius ro.

The gravity g is defined by its value at the sphere surface. The

horizontal momentum equation (6) is not cast in conservative

(flux) form. In (6) the absolute vertical vorticity h 5 n � = 3
vH1 f, where n is the unit vector normal to a z surface, and K5
jvHj2/2 is the horizontal kinetic energy. In the curvature and

Coriolis terms in (6) and (7), f 5 2Ve sinc, e 5 2Ve cosc, c is

the latitude,Ve is the angular rotation rate of Earth. The terms

FVH
, FW , FQm

, and FQj
represent sources and sinks from physics,

subgrid models, and filters. The mass-flux normal to the hori-

zontal coordinate surface is V 5 V � =z and the corresponding

normal velocity is v 5 _z.

b. Discrete equations

The MPAS solver uses a spherical centroidal Voronoi mesh

and a C-grid finite-volume discretization. All prognostic vari-

ables are defined as cell (volume) averaged variables except for

the velocities that are defined as area averages of the face-

normal velocities over the cell faces.

To accommodate the deep-atmosphere geometry in the

MPAS finite-volume discretization, we begin by considering

the conservation equations for the cell averaged variables, i.e.,

Qm, rd, Qj. The finite volume discretization for these variables

is derived by integrating the conservation equation over the

cell volume and using the divergence theorem to express the

volume integral of the flux divergence as an area integral of

the fluxes through the cell faces. The discrete conservation

equation for an arbitrary scalar mass rdb for the shallow-

atmosphere equations is
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where n is the unit normal directed outward from the edge for

the cell, and b
e
and b

z
represent transport scheme stencils

projecting the quantity b to the cell edges (see Skamarock and

Gassmann 2011). Dividing through by the volume AoDz casts

(11) in the form directly integrated in the model:
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The term (U � n) is the horizontal mass flux normal to the cell

edge in (11) and (12), with an outward flux being positive, and

the horizontal area of a cell Ao and the length of a cell edge as

le are defined on the surface of the sphere as the spherical area

of the cell and the great-circle length between vertices on the

sphere surface, respectively.

For the deep-atmosphere equations, the cell volume and the

cell face areas are now functions of the radius from the center of

the sphere. A schematic of a vertical cross section through a cell

for the deep-atmosphere mesh is depicted in Fig. 1. For the

horizontal cell areas through which vertical fluxes are defined

(i.e., where the vertical velocities w and v are prognosed at ra-

dius rv in Fig. 1), the cell face area scales with the radius squared:
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For the vertical cell-edge faces through which the horizontal

fluxes are defined, the cell-edge face area is
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where ru is the radius at the u point that lies at the vertical

midpoint of the cell-edge face on the MPAS mesh, and the

integration limits r1 and r2 are from the bottom to the top of the

cell at that edge face. Finally, the cell volume is
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FIG. 1. Schematic of a vertical cross section through an MPAS

mesh cell employed in the deep-atmosphere solver. The surface of

the sphere is at r 5 ro, and the dark shaded area represents the

interior of the sphere.
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The cell volume (15) is identical to Eq. (14) in Borchert et al.

(2019) describing the deep-atmosphere formulation for the

ICON model that uses a triangular mesh (the dual of the

Voronoi mesh) and also uses a finite-volume formulation for

the cell-centered variables. The adjustments to the cell-face

areas (13) and (14) are also identical to Borchert et al. (2019),

as given in their Eqs. (16) and (15), respectively.

In most applications the integration of the cell-based con-

servation equations is the most costly component in the dy-

namics, and we seek to minimize the extra computations

associated with these integrations in a deep-atmosphere

implementation. We can retain the same discrete form (12)

for these cell-based conservation equations by redefining

the coupled density and momentum variables (1), (2), and

(3) as
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The coupled potential temperature (4) and scalars (5) retain

their form but now use the redefined coupled density (16) in

their definitions. These additional scaling factors ~rc, ~re, and ~rv
are defined at the cell centers, cell edges, and cell interfaces,

respectively, where ~re 5 ru/ro, ~rv 5 rv/ro, and

~r2c 5
r21 1 r

1
r
2
1 r22

3r2o
,

for the deep-atmosphere geometry. For the shallow atmo-

sphere r 5 ro and ~rc, ~re, and ~rv equal 1. Thus the scaling of the

density and momentum in the shallow-atmosphere formula-

tion are now augmented by an additional metric terms to ac-

count for the deep-atmosphere mesh geometry as represented

in (16)–(18), and cast in such a way that the conservation

equations for the cell-based variables, and importantly their

flux divergence operators, are unchanged in the solver.

In contrast, some of the discrete operators in the momentum

equations need to be directly modified to incorporate the deep-

atmosphere geometry. Specifically, the discrete operators for

the pressure gradient and for the relative vorticity needed in

the horizontal momentum equation (6) are now cast as
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where the horizontal lengths between cell centers de and the

area of the triangle centered over cell vertices An are given at

the surface of the sphere.

Given the definitions (19) and (20), we can write the discrete

version of the horizontal momentum Eq. (6), cast in terms of

the cell-face normal momentum U, as
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where in the local coordinate (x, y) the xdirection is normal to the

cell edge, y is parallel to the edge and follows the right-hand rule,

ar is the rotation angle between the line normal to the horizontal

velocity (using a right-hand rule) and the meridian, and the local

horizontal velocity components are (u, y). The edge-tangent ve-

locity y is diagnosed as described in Thuburn et al. (2009). In the

discrete formulation (21) we approximate the metric term in the

horizontal pressure gradient within the horizontal momentum

equation (6) (the first term in brackets) by its hydrostatic value:
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This approximation significantly reduces the horizontal and

vertical averaging in the C-grid staggering discretization of

the correction term, and we have found that errors in resting

atmosphere test simulations are reduced. Since the nonhydrostatic

contributions to pressure are a small fraction of the hydrostatic

pressure, this representation appears to maintain good accuracy.

The vertical momentum equation (7) is cast as
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The cell-centered horizontal velocities uc and yc in (22) are the cell-

centered longitudinal and latitudinal velocities that are computed

using a radial basis reconstruction (Bonaventura et al. 2011).
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As with the definitions for ~r andU, the operators (19) and (20)

and the momentum equations (21) and (22) revert to their

shallow-atmosphere form when ~r5 1 and bd 5 0.

MPAS-A uses a split explicit time integration technique

whereby a smaller time step is used with a perturbation form of

the governing equations to integrate the acoustic and gravity

wave modes (see Klemp et al. 2007). The perturbations are

defined relative to the values of the prognostic variables at the

start of the current time step and are denoted by the 00 super-
script. The pressure gradient terms in the momentum equa-

tions, cast in terms of pressure p in (21) and (22), are recast in

terms of a prognostic perturbation variableQ00 5 (~ru)00 to allow

for the implicit time integration of the vertically propagating

acoustic modes. The deep-atmosphere perturbation momen-

tum equations for the split acoustic steps are
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where g 5 cp/cy is the ratio of the dry-air heat capacities at

constant pressure and volume, and p is the Exner function.

t represents the integration time during the acoustic substeps

in the time-split scheme for the current full time step beginning

at time t. The operator ( )t represents a time average over the

acoustic time step in the acoustic step vertical momentum

equation (24). As with the other equations, the perturbation

equations (23) and (24) revert to their shallow-atmosphere

form when ~r5 1.

In the discrete conservation equation for cell-centered var-

iables (12), the terms b
e
and b

z
denote projections of b (where b

may be a mixing ratio, um, or rd) onto the cell faces, where the

formulation of the projections determine the order of accuracy

of the scheme. The operator ()
e
in (21) and (23) represents

horizontal (along coordinate surfaces) projections to cell edges

from the cell centers, and here are accomplished by taking an

average of the cell center values from the two cells owning the

edge. Edges bisect the lines connecting cell centers, so this also

corresponds to a linear interpolation. The operator ()
z
in (21)–

(24) represents vertical projections from cell interfaces (w

point) to the cell centers or from cell centers to a cell interface

in the vertical momentum equations (22) and (24). Projections

from w points to cell-center points are computed as averages

because cell centers are located halfway between the w points

in both the physical space z and computational space z.

MPAS-A often employs a vertical mesh that is not uniform,

and in this case the w points do not lie halfway between cell

centers. MPAS-A (and WRF; Skamarock et al. 2019) have

used linear interpolation in the computational z space to

project cell-centered values to the w points, thus maintaining

spatial second-order accuracy for the buoyancy term in the

vertical momentum equation discretization. In examining en-

ergy conservation for the discrete system, we found a small but

noticeable error that was significantly reduced when we

changed this projection to represent the integrated average

value between the cell centers. The piecewise constant distri-

bution of density and potential temperature is consistent with

their definition within the finite-volume formulation as cell-

averaged values, and is consistent with the integrals of the

potential, internal, and kinetic energy for MPAS. Assuming a

piecewise constant distribution in a cell, the weights for the

integrated average value are reversed from those of the linear

interpolation. We find little discernible difference in the solu-

tions using either approach. MPAS-A does not exactly con-

serve total energy, and this modification results in a very small

reduction in the total energy budget residual.

As noted earlier, the shallow-atmosphere solver in the

MPAS implementation is recovered simply by setting the ~r

coefficients to 1 andbd to zero (disabling the additional Coriolis

and curvature terms appearing in the deep-atmosphere formula-

tion). Tests with the unmodified MPAS-Atmosphere version

7 release and the deep-atmosphere-enabled version 7 indi-

cate that the additional terms and operations in the deep-

atmosphere code increase the cost of the dry dynamics by

less than 5%. The inclusion of moisture and model physics

would substantially reduce this overhead. No effort has

been made to optimize the implementation of the additional

operations.

3. Baroclinic waves on the Earth-radius sphere

There exist only a few published idealized tests for atmo-

spheric fluid-flow solvers employing the deep-atmosphere

equations. In Ullrich et al. (2014), solutions from shallow and

deep-atmosphere solvers are evaluated for the case of an un-

stable baroclinic jet on both an Earth-radius sphere and a

reduced-radius sphere. For the Earth-radius sphere, solutions

produced with solvers employing the shallow-atmosphere

equations are very similar to the deep-atmosphere solutions.

We present Earth-radius sphere solutions for this test using the

deep-atmosphere version of MPAS in this section, and ex-

amine additional aspects of the solution not discussed in

Ullrich et al.

The unstable baroclinic wave case in Ullrich et al. begins

with an initial state that does not vary zonally. The initial states

for both the shallow and deep equations are analytic, and

represent steady state solutions (in geostrophic and hydrostatic

balance for both the shallow and deep equations) in the ab-

sence of perturbations to the jets. The initial states have con-

stant surface pressure (1000 hPa) and zero wind speed at the

surface. There is no terrain in this test configuration and the

model top (a rigid lid in the case of MPAS) is set at 30 km. A

full description of the analytic initial states for both shallow
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and deep-atmosphere equations is found in Ullrich et al.

(2014), and the code used to produce the initial states is that

used in the 2016 Dynamical Core Model Intercomparison

Project (DCMIP, Ullrich et al. 2018). For the MPAS initiali-

zation we specify height and latitude as inputs and use the

output temperature profile at model levels along with the

surface pressure to compute a thermodynamic profile that

satisfies the discrete hydrostatic balance and state equation

within MPAS. In the deep-atmosphere case the hydrostatic

balance also accounts for the deep-atmosphere Coriolis and

curvature terms and the dependence of gravity on height. The

zonal velocities are pointwise specified (evaluated at the face

centers), and no special treatment is used to remove initial

horizontal divergence. The initial perturbation used to trigger

the baroclinic waves is specified within the DCMIP-based

initialization code, and we use the same perturbation as de-

scribed by Ullrich et al. We employ the same vertical mesh as

used in Ullrich et al. [2014, Eq. (28)] and a quasi-uniform

horizontal Voronoi mesh with approximately 120-km cell-

center spacing is used for these tests. The reference solutions

from MPAS use the standard configuration from the MPAS

version 7 release for model filters, including the fourth-order

horizontal background hyperviscosity, a Smagorinsky-based

second-order horizontal filter, and upwind biased transport

settings.

Plots at days 8 and 10 of the surface pressure and 850-hPa

temperature and relative vorticity from the deep-atmosphere

MPAS integrations for the baroclinic wave integration on the

Earth-radius sphere are given in Fig. 2, and can be directly

compared with results from Ullrich et al. (2014; their Figs. 4

and 5) from the MCore model and the Met Office ENDGame

model, respectively (see Ullrich et al. for details concerning these

models). The results from the three models are very similar, with

only minor differences in the small-scale structure (e.g., the vor-

ticity filaments). The deep-atmosphere solutions are also similar

to shallow-atmospheremodel integrations forMPAS (not shown)

and shallow-atmosphere results presented in Ullrich et al. The

similarity of the shallowanddeep results is expected given that the

ratio of the domain depth to Earth’s radius is small (;1/200).

We also find similar evolution of the minimum surface

pressure depicted in Fig. 3 where both the MPAS and Ullrich

et al. results are shown. Frontal collapse occurs between days 8

and 9 in the simulation, and it is in the period following collapse

that we observe some spreading of the minimum pressures.

FIG. 2. Results from the MPAS deep-atmosphere simulation for the Earth-radius sphere. These can be compared

directly with the MCore and EndGame model results in Ullrich et al.’s (2014) Figs. 4 and 5.
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TheMPAS surface pressure results are relatively insensitive to

the MPAS configuration details (e.g., time step, filter configu-

ration), and the small differences are confined to the period

after day 12.

While the surface pressure is relatively insensitive to the

filtering configurations in MPAS, the maximumwind speed for

the MPAS simulations, given in Fig. 4, shows significant sen-

sitivity to the MPAS filtering configuration. This baroclinic

wave test uses free-slip lower and upper boundaries, and the

maximum wind speed is located within the jet core until day 7

after which it is found at the lowest (i.e., near-surface) model

level. Aside from the default dissipation configuration used in

the reference simulation, the horizontal fourth-order filter is

the only active spatial filter in these hyperviscosity tests (i.e.,

the MPAS second-order Smagorinsky filter, and upwinding in

the transport operators, are disabled). The highest value of the

hyperviscosity used in these simulations (53 1014m4 s21) is the

value used by the CAM-EUL and CAM-SE models in inte-

grations presented in Ullrich et al. (2014). The MCore,

ENDGame, and CAM-FVmodels rely on dissipation inherent

in the discretization (e.g., in the transport operators, etc.). The

maximum velocities increase with decreasing hyperviscosity in

MPAS with the least-filtered configuration producing results

having values over twice as high as that produced by the most-

filtered configuration. There is also more finescale structure in

the vorticity fields along with larger values (not shown) in the

MPAS simulations when the hyperviscosity is reduced. Given

that there is no fixed physical viscosity or hyperviscosity in the

test case specification, the solution cannot be converged and

there is no quantitative measure of model error. The largest

solution differences among different models is as likely due to

the differing filter configurations and damping implicit in the

formulations as it is to the different base discretizations, grid

staggerings employed, etc.

MPAS has been designed to conserve mass and scalar mass,

but it has not been designed to conserve total energy. The in-

tegration of mass over the MPAS mesh can be expressed as

M5 �
cells

rV
cell

5 �
cells

rA
o
Dz~r2c . (25)

MPAS uses a cell-centered approximation for the horizontal

kinetic energy (KE) in the discretization of the horizontal

FIG. 3. Minimum surface pressure from the MPAS deep-

atmosphere simulation plotted with those from the simulations

presented in Ullrich et al.’s (2014) Fig. 7.

FIG. 4. Maximum horizontal wind speed from the MPAS deep-

atmosphere results using different values for the hyperviscosity.

The reference solution uses the default MPAS dissipation config-

uration, while for the hyperviscosity results all other spatial filters

are disabled.

FIG. 5. Energy budget for theMPAS deep-atmosphere reference

simulation. For reference, the initial kinetic energy is approxi-

mately 77.5 J kg21.
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momentum equation (21), while the vertical velocity is prog-

nosed at the layer interfaces. We integrate the horizontal KE

over the domain in a similar manner to mass. For the vertical

component we evaluate w2 at the interfaces and weight the

density to those interfaces as is done for the density term in the

vertical momentum equation, and then integrate over the

volume extending vertically from the cell centers below and

above the w interface point. Using this formulation the KE

integral can be expressed as

KE5 �
cells

(rKE
h
)A

o
~r2cDz1 �

w cells

�
rz

w2

2

�
A

o
~r2vDzv . (26)

The internal energy is computed as

IE5 �
cells

rc
y
TA

o
Dz~r2c . (27)

The potential energy is expressed as

PE5 �
cells

rg

�
z1

z2

r
0

�
A

o
Dz . (28)

The time evolution of the total energy and its components for

the Earth-radius sphere results are given in Fig. 5. The kinetic

energy increases over time as the wave develops, and the po-

tential and internal energy decrease. The initial kinetic energy

normalized by the atmospheric mass is 77.5 J kg21, so the ki-

netic energy increases by approximately one-third from its

original value over the 15 day integration. The total energy

decreases slightly over time starting around day 8. The dissi-

pation of kinetic energy is not added back into the internal

energy in this configuration of MPAS, so the decrease in total

energy is expected and could be used as an estimate of the

kinetic energy dissipation. BecauseMPAS is not designed to

conserve total energy, the change in total energy could also

occur because of discretization-based errors relative to en-

ergy conservation in the scheme, but qualitatively the en-

ergetics of the MPAS deep-atmosphere formulation are

behaving properly.

4. Baroclinic waves on the reduced-radius sphere

The baroclinic wave solutions on the Earth-radius sphere

are very similar for the shallow and deep-atmosphere equation

solvers. Ullrich et al. (2014) also present results from tests of

the MCore model using a reduced-radius sphere, in their case

reducing the sphere radius by a factor of 20 and raising the

FIG. 6. MPAS surface pressure fields at days 6, 8, and 10 for the shallow- and deep-atmosphere jet simulations for

the X20 reduced-radius sphere test cases. These can be compared directly with Fig. 9 in Ullrich et al. (2014), and

with the deep-atmosphere solutions at days 8 and 10 from the ICON model in Borchert et al.’s (2019) Fig. 6.
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rotation rate of the sphere by a factor of 20 (Ullrich et al. label

this the X20 case). The evolutions of the baroclinic waves for

this reduced-radius sphere tests are very different in the shal-

low and deep equations solutions. We have repeated these test

simulations with MPAS and display in Fig. 6 the shallow- and

deep-atmosphere surface pressure fields at days 6, 8, and 10.

These results can be compared with Fig. 9 in Ullrich et al.

(2014) showing results from MCore, and the deep-atmosphere

results for days 8 and 10 can be compared with Fig. 6 in

Borchert et al. (2019) for the ICON model. The shallow and

deep-atmosphere solutions are quite similar in the MCore and

MPAS results, and the deep-atmosphere results from ICON

are similar to those from MCore and MPAS. The differences

between the shallow and deep-atmosphere structure are very

pronounced at days 6 and 8 where the deep-atmosphere wave

has much more amplitude and structure compared to the

shallow-atmosphere solution. There is also small-scale struc-

ture that could be characterized as noise in the equatorial re-

gion of the ICON and MPAS solutions. We also find that the

MPAS solutions are insensitive to increased vertical resolution

(i.e., above the baseline 30 levels), confirming the ICON-based

results reported in Borchert et al. (2019).

The primary differences in the reduced-radius deep-atmo-

sphere test case results in Ullrich et al. (2014), Borchert et al.

(2019), and those reported here are found in the smaller-scale

low pressure disturbances trailing (to the west of) the main

baroclinic waves, specifically the waves between 608 and 908E
on day 8 and those west of 1208E on day 10 in Fig. 6. We have

found that one significant source of these differences are the

dissipation and model stabilization techniques and configura-

tions employed in the models. For example, MCore does not

apply explicit filters in its formulation, rather the filtering is

implicit in its formulation. ICON includes explicit filters in its

formulation in addition to filtering implicit in its transport

scheme formulation, and MPAS follows a similar approach

employing both explicit and implicit filtering in its default

configuration. Figure 7 depicts the surface pressure at days 8

and 10 from two additionalMPAS simulations for the reduced-

radius deep-atmosphere test case where the explicit spatial

filters were disabled except for the fourth-order horizontal

hyperviscosity formulation. Two different fixed values of the

hyperviscosity were used, 6.25 3 1010 and 1.25 3 1010m4 s21,

and these correspond to values of 53 1014 and 13 1014m4 s21

scaled by the sphere radius reduction cubed (1/8000). The re-

sults using the larger hyperviscosity, depicted in the left panels,

compare very well with the MCore solution shown in Ullrich

et al.’s Fig.9, especially for day 8. The right panels depict the

solution employing a hyperviscosity with 1/5 the magnitude,

and these results compare very well with the ICON results

given in Borchert et al.’s Figs. 6c and 6d that are computed on a

mesh with twice the horizontal mesh density (Du 5 0.488,
;53 km) than that reported for MCore (18) and MPAS (Dx ;
120 km). These tests confirm that the specifics of a model’s

configuration, in this case the filter configuration, play a sig-

nificant role in this intercomparison, and that it is possible to

tunemodel configurations to produce specific structures, in this

case structures in the trailing baroclinic waves. The results also

further illustrate the lack of convergence in the solutions that

was also shown previously in the Borchert et al. results.

Figures 8a and 8b show the zonal wind fields and the po-

tential temperature for the shallow and deep-atmosphere ini-

tial state jets in a meridional cross section. The midlatitude jet

FIG. 7. Surface pressure fields at days 8 and 10 for the deep-atmosphere jet simulations for the X20 reduced-

radius sphere test case using two values of a fixed hyperviscosity. The results in the left panels are very similar to the

MCore results inUllrich et al.’s (2014) Fig. 9 and to theDu5 0.958mesh results in Borchert et al.’s (2019) Fig. 6 (top

panels). The results in the right panels are very similar to the Du 5 0.488 mesh results in Borchert et al.’s (2019)

Fig. 6 (middle panels).
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in the shallow-atmosphere state is both wider and deeper than

that in the deep-atmosphere state. There also exists an easterly

equatorial jet in the deep-atmosphere initial state that is en-

tirely absent from the shallow-atmosphere state. Perhaps most

notable is the region with unstable lapse rates (uz , 0) in the

tropics in the lower troposphere between approximately 3 and

6 km. Further examination of the MPAS deep-atmosphere

solution indicates that the small-scale structure appears to be

related to this layer overturning as disturbances reach it and

trigger the instability.

The equatorial lower-tropospheric instability in the analytic

deep-atmosphere initial state for the X20 reduced-radius

sphere can be removed by increasing the reference tempera-

ture To from the value To 5 (Te
o 1Tp

o )/25 275K [Ullrich et al.

2014, their Eq. (18)], where Te
o 5 310K is surface temperature

at the equator and Tp
o 5 240K is the surface temperature at the

poles, to a higher value (P. Ullrich 2020, personal communi-

cation). We have found that using To 5 0:8Te
o 1 0:2Tp

o 5 296K

for the X20 deep-atmosphere case removes the unstable lapse

rates and produces a lower-tropospheric lapse rate at the

equator similar to that found in the shallow-atmosphere initial

state using the Ullrich et al. value of 275K. This alternative

deep-atmosphere initial state is given in Fig. 8c. One interest-

ing artifact of this modification is the strengthening of the

equatorial easterly jet compared with the original deep-

atmosphere initialization. In both cases absolute geostrophic

vorticity zg 1 f is positive everywhere in the initial state, thus

neither deep-atmosphere states for the X20 jet are inertially

unstable even with the enhanced negative relative vertical

vorticity associated with the easterly equatorial jet.

Results from this revised deep-atmosphere initial state for

the X20 reduced-radius sphere are given in Fig. 9, and the

shallow-atmosphere results are plotted again in this figure for

direct comparison. The shallow- and deep-atmosphere solu-

tions are remarkably similar and there is no longer any sig-

nificant small-scale structure in the equatorial region. These

results strongly indicate that the unstable layer was the source

of the equatorial noise in the original X20 deep-atmosphere

jet, and that the major differences between the shallow and

deep-atmosphere solutions presented in Ullrich et al. (2014)

for MCore and for the corresponding MPAS results presented

in Fig. 6 are primarily the result of differences in the initial state

and not directly the result of the temporal integration of the

shallow and deep equations using these states.

5. Summary and discussion

We have presented an extension of the shallow-atmosphere

equations solver used in MPAS that enables the integration of

the deep-atmosphere equations. For cell-based variables (r, u,

q), the deep-atmosphere geometry is accounted for by modi-

fying the coordinate metric terms in the coupled density and

momentum variables (16)–(18) that were already present in

the shallow-atmosphere solver; thus the flux-divergence oper-

ators and time integration code are identical in both systems

and a single integration code is shared by both equation sets.

Additional coefficients are required in the momentum equa-

tions to accommodate the deep-atmosphere formulation, and

they are cast as ratios of the radial distance of points from the

center of the sphere to the sphere radius. In this im-

plementation, setting these coefficients to 1 and disabling the

deep-atmosphere Coriolis and curvature terms is all that is

needed to integrate the shallow-atmosphere equations in the

FIG. 8. Cross sections for the initial states used in the X20

reduced-radius sphere tests. Colors are the zonal velocity (m s21),

thin black contours are potential temperature (K) with a 10-K

contour interval, and the thick contour indicates absolute insta-

bility (uz , 0).
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deep-atmosphere-enabled MPAS code. Tests with the MPAS

version 7 release and the deep-atmosphere enabled version 7

show that the additional cost of the dry dynamics is less than

5% as indicated in timings for the tests presented in this paper.

Idealized baroclinic wave test cases for an Earth-radius

sphere and a reduced-radius sphere (the X20 case of Ullrich

et al. 2014) are carried out to examine the performance of the

deep-atmosphere extension of MPAS. The shallow and deep-

atmosphere solutions from MPAS are similar to other model

results for these same tests as reported in Ullrich et al. (2014)

and in Borchert et al. (2019). We found that the evolution of

domain-maximum horizontal velocity is much more sensitive

to model configuration compared to the minimum surface

pressure for the Earth-radius sphere experiments, of which the

latter is most often cited in the literature, e.g., Ullrich et al.

(2014). We also examined energy conservation in the solu-

tions as an additional metric not examined in any of the

other studies. Even though MPAS has not been designed to

conserve energy, the total energy and its components evolve

as expected.

The deep-atmosphere reduced-radius sphere (X20) test case

exhibited the most significant differences in the surface pres-

sure fields in model simulation comparisons, in this case in the

smaller-scale baroclinic waves. We found that the different

structures reported by others could be produced in MPAS by

modifying the dissipation configuration.

In this study and in other published results, the X20 deep-

atmosphere solutions are markedly different than X20 shallow

solutions. We found one significant issue with the deep-

atmosphere X20 test case initial analytic state given in

Ullrich et al. (2014). This initial state contains unstable lapse

rates (uz , 0) in the equatorial lower-troposphere that lead to

small-scale structure (noise) as a result of overturning in the

equatorial region in the evolving solution. A simple adjustment

to the X20 deep-atmosphere initial state specification produces

equatorial tropospheric lapse rates similar to those in X20

shallow-atmosphere initial state. Simulations using the revised

deep-atmosphere initial state result in similar evolution of the

X20 deep and X20 shallow states and removes the equatorial

noise from the deep-atmosphere evolution. These results in-

dicate that the differences in the X20 deep and shallow solu-

tions reported in Ullrich et al. (2014), and reproduced here and

in Borchert et al. (2019), arise primarily because of differences

in the initial states and not primarily from integrating the deep

versus shallow equations. Unfortunately, these results also

reveal that this reduced-radius sphere test case is not very

FIG. 9. Surface pressure fields at days 6, 8, and 10 for the shallow- and deep-atmosphere jet simulations for the

X20 reduced-radius sphere test cases with the revised deep-atmosphere initial state that removes the absolute

instability.
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discriminating for use in evaluating the numerics of the deep-

atmosphere equations.

Test cases for atmospheric models, in order to be useful,

should have clear measures of solution correctness and allow

for the diagnosis of the source of model errors when incorrect

solutions are produced, the latter typically through some un-

derstanding of the critical terms in the equations where dis-

cretization errors are likely to lead to errors in the simulated

flows. The similarity between solutions from different models

provides evidence of solution correctness for the baroclinic

wave test cases used in this study. Of note, our experience

implementing the deep-atmosphere extension in MPAS is that

the model’s ability to maintain the initial balance (both hy-

drostatic and geostrophic) in the analytic initial state was most

useful in finding and removing discretization or formulation

errors, while the simulations provided further verification but

little additional information to guide the implementation. The

initial state balances for the deep and shallow-atmosphere

initializations are the only analytic solutions we have for the

full model equations. Additionally, given the similarity be-

tween the shallow and deep X20 reduced-radius sphere solu-

tions for similar initial states, we cannot easily gauge the effects

of the additional deep-atmosphere terms when comparing

different solutions.

Further work is needed to develop tests that allow for

unambiguous evaluation of nonhydrostatic deep-atmosphere

solvers and that provide for quantitative assessment of the

impact of the shallow-atmosphere approximation. There have

been a number of efforts to develop test cases following the

approach of Wedi and Smolarkiewicz (2009) where a reduced-

radius sphere is used to lower computational cost for higher

horizontal-resolution testing. For the tests considered here, the

balanced initial jet states for the shallow and deep equations

cannot be identical because they satisfy different balance

constraints, thus there is no straightforward way to identify

solution differences that arise from the different initial states

and those that arise from integrating different evolution

equations. Thus the comparisons are only qualitative at this

stage, and they do not directly address the question of when the

shallow-atmosphere approximation becomes problematic. We

appreciate that this is not an entirely satisfactory way to eval-

uate the correctness of models nor the validity of equation sets.

The extensions to the MPAS dynamical core presented in

this paper address the deep-atmosphere geometry and the full

Coriolis and curvature terms. These are necessary steps in the

evolution of this nonhydrostatic solver to applications requir-

ing higher model tops. We have not addressed important

changes needed within atmospheric physics components, for

example the extension of the plane-parallel radiation flux to

include the spherical metrics. For geospace applications, where

the model top may extend to 500 km or more above Earth’s

surface, additional capabilities will be needed, including a

generalization of the equation of state to include evolving

prognostic atmospheric constituents, additional prognostic

equations for those constituents, and methods to integrate the

viscous terms given the high physical viscosities characterizing

the upper atmosphere. We will report on these extensions in

future work.
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